
TEAPOT: A Toolset for Evaluating Performance, Power and
Image Quality on Mobile Graphics Systems

Jose-Maria Arnau
Computer Architecture

Department
Universitat Politecnica de

Catalunya
jarnau@ac.upc.edu

Joan-Manuel Parcerisa
Computer Architecture

Department
Universitat Politecnica de

Catalunya
jmanel@ac.upc.edu

Polychronis Xekalakis
Intel Labs

Intel Corporation
polychronis.xekalakis@intel.com

ABSTRACT
In this paper we present TEAPOT, a full system GPU sim-
ulator, whose goal is to allow the evaluation of the GPUs
that reside in mobile phones and tablets. To this extent,
it has a cycle accurate GPU model for evaluating perfor-
mance, power models for the GPU, the memory subsystem
and for OLED screens, and image quality metrics. Unlike
prior GPU simulators, TEAPOT supports the OpenGL ES
1.1/2.0 API, so that it can simulate all commercial graphical
applications available for Android systems.

To illustrate potential uses of this simulating infrastruc-
ture, we perform two case studies. We first turn our at-
tention to evaluating the impact of the OS when simulat-
ing graphical applications. We show that the overall GPU
power/performance is greatly affected by common OS tasks,
such as image composition, and argue that application level
simulation is not sufficient to understand the overall GPU
behavior. We then utilize the capabilities of TEAPOT to
perform studies that trade image quality for energy. We
demonstrate that by allowing for small distortions in the
overall image quality, a significant amount of energy can be
saved.

Categories and Subject Descriptors
C.1.4 [Parallel Architectures]: Mobile Processors; C.4
[Performance of Systems]: Modeling techniques

Keywords
Mobile GPU; low-power graphics; simulation infrastructure

1. INTRODUCTION
Mobile devices such as smartphones and tablets have been

widely adopted in recent years, emerging as one of the most
rapidly spread technology [14]. At the same time, mobile
user interfaces have evolved from simple text-based displays

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS’13, June 10–14, 2013, Eugene, Oregon, USA.
Copyright 2013 ACM 978-1-4503-2130-3/13/06 ...$15.00.

to a point where interactive high definition 3D graphics is be-
coming the standard [11]. Mobile software excels in provid-
ing very rich user interfaces powered by graphics hardware,
including a plethora of 2D/3D games, applications for maps
or web browsing, and even hardware acceleration of the desk-
top [21]. Not surprisingly, previous studies have identified
the GPU and the screen as the main battery consumers on
a smartphone for many use cases [1, 3]. As the demand for
more visually compelling graphics on mobile devices con-
tinues to grow, understanding the performance and power
aspects of the graphics subsystem grows in importance.

Prior work on GPU simulation tools [2, 4, 10, 13] is mainly
focused on accurately modelling desktop-like GPUs. Unfor-
tunately, these simulators are not tailored towards the mo-
bile segment. In fact, to the best of our knowledge, none
of them have support for the OpenGL ES API [29], which
means that they cannot run smartphone applications. Fur-
thermore, most of them do not provide a power model. This
is an important impediment, as all of the mobile segment de-
vices are battery operated and thus power consumption is
key design aspect. Moreover, none of the existing simulators
provide energy estimations for the OLED screens. This is
an important aspect of graphics simulation as the screen is
one of the main battery consumers and its energy depends
on the output generated by the GPU [5].

Full system GPU simulation is another important benefit
provided by our simulator, that is not available in any ex-
isting GPU simulation infrastructure. This means that fre-
quent GPU-related tasks such as image composition [21], or
rendering of background applications (e.g., advertisements),
are usually not taken into consideration. As we will show in
a later section, this accounts for non-negligible discrepancies
in the simulated use of the GPU. More specifically, we show
that the OS GPU usage is non-negligible, representing up to
52% of GPU time and up to 48% of GPU energy for a set
of commercial Android games.

In this paper we present TEAPOT, a toolset for evaluat-
ing the performance, energy and image quality of a mobile
graphics subsystem. TEAPOT provides full-system simu-
lation of Android applications. It includes a cycle-accurate
GPU simulator, a power model for mobile GPUs, based on
McPAT [8], and a power model for OLED screens [5]. Fur-
thermore, it is able to provide image quality assessment us-
ing the models presented in [17].

In terms of the GPU microarchitecture, TEAPOT mod-
els both Tile-Based Deferred Rendering (TBDR) [35] and
Immediate-Mode Rendering (IMR) [10]. While IMR is more

Figure 1: Mobile GPU simulation infrastructure.

popular for desktop GPUs, for GPUs targeting energy effi-
ciency TBDR seems to be the design of choice (ARM Mali
[24] and PowerVR [33] are TBDR). Prior work only focused
on the IMR approach, which as it will be shown in Sec-
tion 2.3.1 is significantly different from TBDR both in terms
of performance and power.

This paper focuses on GPU simulation tools. Its main
contributions are the following:

• We describe TEAPOT, a new toolset for analyzing mo-
bile graphics systems in 4 dimensions: GPU execution
time, GPU energy, OLED screen energy and image
quality.

• We show how TEAPOT can be employed to evaluate
energy saving techniques that trade quality for energy.
Our results demonstrate that up to 90% of GPU en-
ergy can be saved by reducing screen resolution, losing
less than 13% image quality for a set of commercial
Android games.

• We argue that full-system GPU simulation is crucial to
achieve accurate results, since common OS tasks such
as image composition consume 26% of GPU time and
24% of GPU energy on average for a set of Android
games.

The remainder of this paper is organized as follows: The
next section describes TEAPOT. In Section 3 we present
our evaluation methodology. In Section 4 we illustrate the
benefits of using full-system GPU simulation, analyzing the
OS GPU usage. In Section 5 we evaluate different energy
saving techniques that trade quality for energy. Section 6
contains a discussion of related work on GPU simulation
tools. Finally, in Section 7 we provide some conclusions.

2. SIMULATION INFRASTRUCTURE
TEAPOT is a set of tools that can be used for evaluat-

ing mobile graphics systems. Figure 1 illustrates the overall
infrastructure. TEAPOT leverages existing tools (e.g, Mc-
PAT or Gallium3D) that have been coupled with our GPU

models and adapted for the low-power segment. The goal
of TEAPOT is to drive the evaluation of new energy saving
techniques for low power graphics.

TEAPOT is able to run and profile unmodified commer-
cial Android applications. We have modified the Gallium3D
driver in order to profile OpenGL ES commands and col-
lect a complete GPU instruction and memory trace. This
trace is then fed to our cycle-accurate GPU simulator with
which we estimate the power and performance for the given
application.

As mentioned earlier, TEAPOT also includes a power
model for OLED screens. This is crucial for mobile devices
as the energy consumed by the screen is a significant part of
the overall energy, while it also depends on the images ren-
dered by the GPU. Therefore, the tasks performed by the
GPU driver and the GPU can significantly affect the energy
consumed by the OLED screen. Thus, when analyzing an
energy saving technique for mobile GPUs we must ensure
that possible energy savings in the GPU are not compen-
sated by an increment in screen energy and vice versa.

TEAPOT provides several image quality metrics, based
on per-pixel errors or based on the human visual perception
system. These metrics are useful when evaluating aggressive
energy saving techniques that trade image quality for energy.
Significant energy savings can be achieved by allowing small
distortions on the output images, as shown in Section 5, and
the visual quality metrics are necessary for evaluating the
magnitude of the distortion. The next sections illustrate
the workflow of the simulation infrastructure and provide
more insights into the components of TEAPOT.

2.1 Application Level
TEAPOT uses the Android Emulator available in the last

version of the Android SDK [18] for running mobile appli-
cations on a desktop computer. The Android Emulator is
based on QEMU [34] and supports GPU virtualization [37].
Hardware acceleration is thus available for the guest Oper-
ating System running inside the emulator, Android in that
case. When enabling GPU virtualization, the OpenGL ES

(a) Immediate Mode Renderer. (b) Tile-Based Deferred Renderer.

Figure 2: Mobile GPU architectures implemented in the simulator. Tile-Based Deferred Renderers are also referred in the
literature as sort-middle architectures [9], whereas Immediate Mode Renderers are also named sort-last fragment [6].

commands issued by the applications are redirected to the
GPU driver of the desktop machine. Since OpenGL ES is
hardware accelerated, state-of-the-art 3D games run at high
frame rates on the emulator. This also simplifies the GPU
profiling since the OpenGL ES commands are not processed
inside the emulator but they are redirected to the desktop
GPU driver and, hence, they are completely visible to the
host system.

The OpenGL ES trace generator component captures the
OpenGL ES command stream generated by the Android ap-
plications. It saves the GPU commands in a trace file, and
redirects them to the appropriate GPU driver. It consists
on a library interposed between the Android Emulator and
the desktop GPU driver that contains replacements for all
the functions in the OpenGL ES API, so when a graphical
application calls some OpenGL ES function, the one in the
trace generator is selected instead of the one in the GPU
driver. Hence the OpenGL ES trace generator is completely
transparent for the emulator and it just causes a small frame
rate decrease due to the time necessary for logging and redi-
recting the GPU commands.

The OpenGL ES trace file contains the GLSL vertex and
fragment shaders [30], i. e. the code executed by the GPU,
and all the data employed for rendering including textures,
geometry and state information. Therefore, it contains all
the necessary data for reproducing the OpenGL ES com-
mand stream. Furthermore, the thread identifier is stored
in the trace together with each OpenGL ES command, so
the cycle-accurate simulator can report per-thread statistics.
Note that the OpenGL ES trace generator captures com-
mands not from just one application but from all the appli-
cations concurrently using the GPU, including the Android
OS, so TEAPOT provides full-system GPU simulation.

2.2 Driver Level
The Gallium3D [22] driver provides GPU functional em-

ulation in TEAPOT. Gallium3D is an infrastructure for de-
veloping GPU drivers. It includes several front-ends for dif-
ferent graphics APIs, including OpenGL ES, and multiple
back-ends for distinct GPU architectures. A modified ver-

sion of Gallium3D is employed for executing the commands
stored in the OpenGL ES trace file. A software-based back-
end is selected for rendering since it can be easily instru-
mented in order to get a complete GPU instruction and
memory trace.

Gallium3D translates the high level GLSL shaders into an
intermediate assembly code, TGSI [36]. The software back-
end of Gallium3D consists of an emulator for this TGSI as-
sembly language. By instrumenting the TGSI emulator all
the instructions executed by the GPU and all the mem-
ory addresses referenced are collected and stored in a GPU
trace file. Note that a software renderer is different from
real hardware, so special care is taken in order to trace just
the addresses that would be issued in a real GPU. On the
other hand, off-screen rendering is employed so the frames
are written into an image file instead of being displayed on
the screen.

2.3 Hardware Level
A cycle-accurate GPU simulator is employed for estimat-

ing the GPU execution time taking as input the instruction
and memory traces generated by Gallium3D. GPU energy
estimations are also provided by using a modified version
of McPAT. The output frames generated by Gallium3D are
then used for computing the energy consumed by the OLED
screen. Finally, the image quality assessment module esti-
mates the visual quality of the output images.

2.3.1 Cycle-Accurate GPU Simulator
Our GPU simulator is able to model low-power GPUs

based on conventional Immediate Mode Rendering (IMR),
such as the GeForce inside the NVIDIA Tegra 2 SoC [19],
and Tile-Based Deferred Rendering (TBDR), such as the
ARM Mali [24]. Figure 2a illustrates the IMR model mod-
eled in TEAPOT. First, the Command Processor receives
a command from the CPU and it sets the appropriate con-
trol signals so the input triangle stream is processed through
the pipeline. Next, the Geometry Unit converts the input
world-space triangles into a set of transformed 2D screen-
space triangles. Finally, the Raster Unit computes the color

Figure 3: Fragment processor architecture. Vertex pro-
cessors are similar but they do not include Pixel/Texture
Caches and MEM/TEX units.

of the pixels overlapped by the triangles. This architec-
ture is called ”Immediate Mode” because once a triangle has
been transformed it is immediately sent down the graphics
pipeline for further pixel processing. The main problem of
this architecture is overdraw : the colors of some pixels are
written multiple times into memory because of pixels from
younger triangles replacing pixels from previously processed
triangles.

In TBDR, shown in Figure 2b, the screen is divided into
tiles, where a tile is a rectangular block of pixels. Trans-
formed triangles are not immediately sent to the Raster
Unit. Instead, the Tiling Engine stores the triangles in mem-
ory and sorts them into tiles, so that for each tile that a tri-
angle overlaps a pointer to that triangle is stored. Once all
the geometry for the frame have been fetched, transformed
and sorted, the rendering starts. Just one tile is processed at
a time in each Raster Unit, so all the pixels for the tile can be
stored in local on-chip memory and they are transferred just
once to the off-chip color buffer in system memory when the
tile is ready, avoiding the overdraw. However, transformed
triangles have to be stored in memory and fetched back for
rendering, so there is a trade-off between memory traffic for
geometry and memory traffic for pixels. TBDR is becoming
increasingly popular in the mobile GPU segment as shown
in Table 1.

Regarding the memory hierarchy, the mobile GPU em-
ploys several first level caches for storing vertices, pixels or
textures. These caches are connected through a bus to a sec-
ond level shared cache. In TBDR, local on-chip memories
are employed for storing all the pixels for a tile. This infor-
mation is not cached in the L2 but it is directly transferred
to main memory.

Figure 3 shows the architecture for the programmable
units of the GPU pipeline, the vertex and fragment proces-
sors. It consists of a fairly simple 4-stage in-order pipeline.
A form of SMT is employed to hide the memory latency
by interleaving the execution of several warps. A warp is a
group of threads executed in lockstep mode, that is the same
instruction is executed by all the threads but each thread op-
erates on a different fragment/vertex. The Warp Scheduler
determines from which warp to fetch an instruction by us-
ing a Round Robin policy. Next, the source operands are
fetched from the register file. Each thread has available a
set of input registers, for storing input parameters such as

Table 1: Unlike in the desktop segment, TBDR has a re-
markable presence in the mobile GPU market.

Manufacturer Chipset GPU Architecture
NVIDIA Tegra Immediate-Mode [19]
ARM MALI Tile-Based [24]
Imagination PowerVR Tile-Based [33]
Qualcomm Adreno Hybrid [31]

screen coordinates or texture coordinates, a set of tempo-
ral registers, for intermediate computations, and a set of
output registers for storing the result of the fragment pro-
gram. Furthermore, a set of constant registers is shared by
all the threads, these registers contain global state infor-
mation such as the number of lights enabled. Four types
of functional units are included in each Fragment Proces-
sor: the SIMD ALU, the Special Functions Unit (reciprocal,
square root), the Memory Unit and the Texture Unit (com-
putes the color of a texture at a given coordinates). The
warps that are stalled waiting for a long latency operation
are marked as blocked and are not selected for execution by
the Warp Scheduler. In the last pipeline stage the result of
the instruction is written in the temporal or in the output
register file. No forwarding mechanism is present. However,
consecutive instructions usually belong to different warps
since Round Robin is employed.

Vertex Processors are similar to Fragment Processors, but
they do not have to handle memory or texture instructions
so they do not include Memory units, Textures Units or
Pixel/Texture caches. We assume a non-unified architec-
ture as opposite to a unified architecture where all the pro-
cessors can handle both vertices and fragments. Usually,
unified architectures offer better workload balance, whereas
non-unified architectures can exploit the difference between
vertex and fragment processing to build more specialized
and optimized processors. For instance, the results obtained
by using McPAT indicate that a Vertex Processor has just
64% of the area of a Fragment Processor. TEAPOT reports
statistics per-frame and per-thread. Since GPU commands
are tagged with the thread identifier, TEAPOT is able to
assign fractions of GPU execution time and energy to each
application.

2.3.2 Power Model
A modified version of McPAT [8] is used for estimating

GPU energy consumption. During start-up, the GPU simu-
lator calls to McPAT passing all the microarchitectural pa-
rameters, such as the number of processors or the cache
sizes, so it can build the internal chip representation. Mc-
PAT estimates the dynamic energy required to access each
one of the hardware structures and the leakage power. Dur-
ing simulation, the cycle-accurate GPU simulator collects
statistics for each unit and, at the end of every frame, it
submits all the activity factors to McPAT. The dynamic en-
ergy is computed by accounting for events in the GPU sim-
ulator and then multiplying these events by a given energy
cost estimated by McPAT. The static energy is obtained by
multiplying the total GPU leakage by the execution time.
McPAT has been slightly modified so it can better model a
low-power GPU. For instance, McPAT allows just for one
private data cache for each core, whereas the Fragment Pro-
cessors contain two data caches (Pixel and Texture caches).

Table 2: Android games employed for the experiments.

Game Description
angrybirds 2D puzzle game
badpiggies 2D puzzle game
captainamerica 3D beat’em up game
chaos 3D helicopter simulator
crazysnowboard 3D snowboarding simulator
hotpursuit 3D racing game
ibowl 3D bowling game
sleepyjack 3D action game
templerun 3D arcade game

Table 3: General purpose mobile applications.

Application Description
anatomy Interactive 3D human anatomy model
citysurf 3D GIS/Mapping System
desktop Android desktop with 3D widgets
droidiris Image browser
facebook Android facebook client
globaltime 3D world clock
k9mail E-mail client

Furthermore, data caches are considered to be read/write,
whereas Texture caches are read-only so they do not need
some hardware structures such as the write-back buffer. Fi-
nally, we have extended McPAT in order to model Texture
sampling units. The texture sampler is implemented by us-
ing a combination of Load units, for fetching the texels (tex-
ture pixels) from memory, and FP units, for applying the
texture filtering.

On the other hand, TEAPOT employs the power model
presented by Dong et. al [5] for estimating the energy con-
sumed by the OLED screen. OLED-based displays consume
significantly different energy when displaying different col-
ors due to their emissive nature. This characteristic creates
a dependence between the GPU and the screen, since the
energy consumed by the display depends on the images gen-
erated by the graphics hardware. The OLED power model
provides three functions f(R), f(G) and f(B) that map pixel
intensity into energy consumption for the red, green and
blue components of a pixel based on [5].

2.3.3 Image Quality Assessment
Generating high quality images comes at the cost of signif-

icant energy consumption which sometimes is not desirable
in the mobile segment, specially for low-battery conditions.
Significant energy savings can be achieved by allowing small
distortions on image quality, as shown in Section 5. When
trading quality for energy we need some way of evaluating
the magnitude of the visual quality decrease. To this ex-
tent, TEAPOT provides several metrics for automatic image
quality assessment. Image quality is evaluated by compar-
ison with a reference image, usually as a result of a high
quality rendering. The error is then estimated by compar-
ing the high quality image with the distorted image. Two
types of metrics are typically employed for image quality as-
sessment, ones based on per-pixel errors and the other based
on the human visual perception system.

Regarding the metrics based on per-pixel errors, TEAPOT

Table 4: GPU parameters employed for the experiments.
We model mobile GPUs based on Immediate Mode Render-
ing and Tile-Based Deferred Rendering.

Parameter Value
Architecture IMR, TBDR
Frequency 600 Mhz
Num. of Vertex Procs. 4
Num. of Frag. Procs. 4
Num. of threads 16 (4 warps,
per Proc. 4 threads/warp)
Tile Cache 32 KB, 4-way, 64 bytes/line
L2 Cache 128 KB, 8-way, 64 bytes/line
Pixel/Texture Caches 8 KB, 2-way, 64 bytes/line
Vertex Cache 16 KB, 2-way, 64 bytes/line
Main memory 1 GB, 100 cycles latency,

64 bytes/line
Tile Size 16 x 16 pixels

implements the MSE (Mean Squared Error) [25] and the
PSNR (Peak Signal-to-Noise Ratio) [32].

TEAPOT also includes the MSSIM (Mean Structural SIM-
ilarity Index) presented in [17], a metric based on the hu-
man visual perception system. This metric is more desir-
able since the images generated by the GPU are interpreted
by users. Hence, an error in a pixel is a problem just if
it can be perceived by the human visual system, i. e. if
it causes a degradation of structural information, since the
human visual perception system is highly adapted for ex-
tracting structural information from a scene. An MSSIM
value of 100% means perfect image fidelity, whereas a value
of, for example, 90% indicates 10% of perceivable differences
between the reference image and the distorted image. The
original MSSIM metric only works on gray-scale images, but
it can be adapted for RGB format [12].

3. EVALUATION METHODOLOGY
In order to illustrate how TEAPOT can be employed for

analyzing mobile graphics systems we have generated traces
for several Android applications. We have first focused on
games since they represent an important segment of the mar-
ket and games are applications that typically stress the GPU
significantly. Table 2 shows all the games we have selected.
We have tried to provide a good representation of commer-
cial smartphone games, covering both simple 2D games and
more complex 3D games. We have also included a set of
general purpose applications shown in Table 3. Again, we
have covered a wide range of commonly used applications
for smartphones, including maps, a mail client, an image
browser or the Android desktop. Although general pur-
pose applications do not tend to be so GPU intensive as
games, they also rely on hardware accelerated graphics for
displaying very rich user interfaces. Table 4 shows the GPU
configuration employed for the experiments. We have set up
the timing simulator to model an Immediate-Mode Renderer
similar to that of the NVIDIA Tegra 2 chipset [19] (shown in
Figure 2a), and a Tile-Based Renderer similar to the ARM
Mali GPU [24] (shown in Figure 2b).

3.1 Performance characterization
We have conducted several experiments to measure the

overhead introduced by our instrumentation in the Android

0.75

0.80

0.85

0.90

0.95

1.00

1.05

Sp
ee
du
p

angrybird
s
badpiggie

s
captainam

ericachaoscrazysnow
boardhotpursui

t ibowl sleepyjac
k
templerunGEOMEAN

AE IAE

AE IAE

AE IAE

AE IAE

AE IAE

AE IAE

AE IAE

AE IAE

AE IAE

AE IAE

Android Emulator (AE) Instrumented Android Emulator (IAE)

Figure 4: Overhead introduced in the Android Emulator.
The OpenGL ES Trace Generator of TEAPOT produces
a slowdown of 10% on average for our set of commercial
Android games. Hence, the frame rate is not drastically
reduced and games are still playable when generating traces.

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

Sp
ee
du

p

angrybird
s
badpiggie

s
captainam

ericachaoscrazysnow
boardhotpursui

t ibowl sleepyjac
k
templerunGEOMEAN

G3D
IG3D

G3D
IG3D

G3D
IG3D

G3D
IG3D

G3D
IG3D

G3D
IG3D

G3D
IG3D

G3D
IG3D

G3D
IG3D

G3D
IG3D

Gallium3D (G3D) Instrumented Gallium3D (IG3D)

Figure 5: Overhead introduced in the Gallium3D softpipe
driver. The instrumentation of the software renderer causes
a slowdown of 11% on average in our set of commercial An-
droid games.

Emulator and Gallium3D. Furthermore, we have analyzed
the slowdown caused by the GPU functional and timing sim-
ulators included in TEAPOT, compared to the performance
offered by a mobile GPU.

Figure 4 shows the performance slowdown produced by
the OpenGL ES Trace Generator of TEAPOT. The numbers
were collected on an Intel i5-3210M 2.5 GHz, with 4 GB of
main memory and an Intel HD Graphics 4000 GPU. The
generation of the OpenGL ES trace produces a slowdown
between 4% (crazysnowboard) and 20% (sleepyjack), with
an average overhead of just 10% for our set of commercial
Android games. Hence, the games are still playable in the
Android Emulator despite all the OpenGL ES commands
are saved in a trace file.

Figure 5 shows the overhead introduced by the instru-
mentation of the Gallium3D software renderer. Frames are
rendered at WVGA resolution (800x480). The generation
of the GPU instruction and memory traces causes a slow-
down between 2% (sleepyjack) and 26% (hotpursuit), with
an average overhead of 11% for our set of Android games.

Finally, Figure 6 shows the performance of the GPU func-
tional simulator, the Gallium3D softpipe driver, and the per-
formance of the timing simulator compared with a real GPU.
We assume a frame rate of 40 FPS for the comparison, which
is common on current mobile GPUs. The simulations were
executed on a cluster where each node features an Intel Xeon
E5-2630L CPU and 64 GB of RAM. The software renderer,

101

102

103

104

105

106

Sl
ow

do
w
n

angrybird
s
badpiggie

s
captainam

ericachaoscrazysnow
boardhotpursui

t ibowl sleepyjac
k
templerunGEOMEAN

G3D
TBDR
IMR

G3D
TBDR
IMR

G3D
TBDR
IMR

G3D
TBDR
IMR

G3D
TBDR
IMR

G3D
TBDR
IMR

G3D
TBDR
IMR

G3D
TBDR
IMR

G3D
TBDR
IMR

G3D
TBDR
IMR

Gallium3D softpipe (G3D) Simulator TBDR (TBDR) Simulator IMR (IMR)

Figure 6: Slowdown of the functional simulator, Gallium3D,
and the timing simulators for IMR and TBDR. We assume
a frame rate of 40 FPS for the real GPU hardware.

Gallium3D, is an order of magnitude slower than real hard-
ware. On the other hand, the GPU timing simulator causes
an overhead between four and five orders of magnitude with
respect to a real mobile GPU, for both architectures IMR
and TBDR. These slowdowns are common for cycle-accurate
microarchitectural simulations.

4. ANDROID GPU USAGE
Image composition is the process of merging the output

surfaces from multiple sources together into a single sur-
face, where a surface is a memory area to hold an image.
In a multi-tasking mobile device many of the activities tak-
ing place simultaneously generate images for display on the
screen. One of the components of Android, the Surface-
Flinger, takes care of merging all the application surfaces
into a final image that is sent to the display. Composition is
a compute intensive task that involves complex operations
such as scaling, rotation, handling transparencies or color
space conversions [20]. The SurfaceFlinger utilizes OpenGL
ES to boost this process via hardware accelerated graphics.
Using the GPU for image composition significantly improves
the performance of the SurfaceFlinger, making it possible
to display complex user interfaces at high frame rates in a
smartphone. However, it can potentially reduce the perfor-
mance of the graphical applications since the same GPU is
employed for both rendering and composition.

Figure 7 shows the overhead of hardware accelerated im-
age composition for several Android games. The graph de-
picts the percentage of GPU time and energy devoted to ren-
dering the game and the image composition. SurfaceFlinger
represents up to 41% of the total GPU execution time, with
an average of 26% for a GPU based on IMR. Regarding the
energy, SurfaceFlinger accounts for a non-negligible 24% of
the GPU energy on average. For a GPU based on TBDR,
the image composition represents 27% of the GPU execution
time and 25% of the GPU energy on average.

Image composition is even more important for general pur-
pose applications. As shown in Figure 8, it consumes 56%
of the GPU time and 55% of its energy on average for IMR.
These applications are not displayed in full screen, hence
widgets from multiple applications are visible in the screen,
increasing the number of surfaces that have to be merged
during composition. For TBDR, 52% of GPU time and 51%
of GPU energy are spent on average for image composition.

The Android GPU usage is non-negligible at all, repre-
senting an important percentage of GPU time and energy.

0
10
20
30
40
50
60
70
80
90
100

%

angrybird
s
badpiggie

s
captainam

ericachaoscrazysnow
boardhotpursui

t ibowl sleepyjac
k
templerunAVERAGE

Immediate Mode Rendering

Tim
e

Energy
Tim

e
Energy
Tim

e
Energy
Tim

e
Energy
Tim

e
Energy
Tim

e
Energy
Tim

e
Energy
Tim

e
Energy
Tim

e
Energy
Tim

e
Energy

0
10
20
30
40
50
60
70
80
90
100

angrybird
s
badpiggie

s
captainam

ericachaoscrazysnow
boardhotpursui

t ibowl sleepyjac
k
templerunAVERAGE

Tile-Based Deferred Rendering

Tim
e

Energy
Tim

e
Energy
Tim

e
Energy
Tim

e
Energy
Tim

e
Energy
Tim

e
Energy
Tim

e
Energy
Tim

e
Energy
Tim

e
Energy
Tim

e
Energy

App Rendering Android Image Composition

Figure 7: Percentage of GPU time and GPU energy (static and dynamic energy) for rendering and image composition, for
several Android games.

0
10
20
30
40
50
60
70
80
90
100

%

anatomy citysurf desktop droidiris facebook globaltim
e k9mail AVERAGE

Immediate Mode Rendering

Tim
e

Energy

Tim
e

Energy

Tim
e

Energy

Tim
e

Energy

Tim
e

Energy

Tim
e

Energy

Tim
e

Energy

Tim
e

Energy

0
10
20
30
40
50
60
70
80
90
100

anatomy citysurf desktop droidiris facebook globaltim
e k9mail AVERAGE

Tile-Based Deferred Rendering

Tim
e

Energy

Tim
e

Energy

Tim
e

Energy

Tim
e

Energy

Tim
e

Energy

Tim
e

Energy

Tim
e

Energy

Tim
e

Energy

App Rendering Android Image Composition

Figure 8: Percentage of GPU time and GPU energy (static and dynamic energy) for rendering and image composition, for
several Android general purpose applications.

Therefore, full-system GPU simulation is a hard require-
ment for achieving accurate results when evaluating a mobile
GPU. Profiling just one target application provides fairly in-
complete information, since multiple applications utilize the
GPU concurrently and image composition makes intensive
use of graphics hardware. Note that composition is still nec-
essary even if there is just one graphical application running
in full screen [21]. The GPU usage of each application can be
evaluated in TEAPOT, since it captures all the OpenGL ES
calls in an Android system and reports per-thread statistics.

5. TRADING QUALITY FOR ENERGY
Current trends for mobile devices indicate a sustained

increase of image quality and resolution. Image quality
strongly depends on the amount of graphics processing, so
it comes at the expense of higher energy consumption. Ac-
tually, the graphics subsystem consumes an important frac-
tion of total energy on such devices [1, 3]. On the other
hand, energy is a main constraint for battery-powered de-
vices like smartphones. Hence, both image quality and oper-
ating time per battery charge are important design features,
but these are unfortunately conflicting goals. Whether one
or the other should prevail may depend on circumstances
and even on personal preferences. For instance, when our
device has recently been charged, we likely want it to operate
at its best video quality. However, when battery is close to
be exhausted, we may prefer to keep the phone alive and pre-
serve most of its functionality (e.g. to avoid losing important

phone calls), at least until we can plug it to recharge. In that
case, we may likely be happy to sacrifice some video quality
for energy. There is a large body of research on techniques
for reducing GPU energy consumption, such as texture com-
pression [15], prefetching [16], access/execute decoupling [1],
etc.

As a way to illustrate the utility of TEAPOT, we have
conducted a case study to evaluate the energy saving useful-
ness of trading image quality for energy. One simple way of
trading video quality for energy is by reducing screen resolu-
tion. We have performed a series of experiments measuring
both the energy consumed by the GPU (static and dynamic
energy) and the quality of the produced images at different
screen resolutions. TEAPOT calculates several well estab-
lished image quality metrics (MSSIM [17], PSNR [32], and
MSEv[25]). These metrics assess the quality of an image by
computing its similarity to a given reference image. For the
following experiments, the reference image frames are gen-
erated at HD resolution (1280x720), as illustrated in Fig-
ure 13, and the images under test are produced at WVGA
(800x480), VGA (640x480), HVGA (420x380) and QVGA
(320x240) resolutions.

Figure 9 shows the normalized GPU energy, including
both static and dynamic energy, spent when running sev-
eral games at these four different image resolutions. We
found 55%, 64%, 81% and 90% average energy savings re-
spectively, for a GPU based on IMR, and 54%, 63%, 78% and
88% average energy savings for Tile-Based Deferred Render-

0.0

0.1

0.2

0.3

0.4

0.5

No
rm

al
iz

ed
 e

ne
rg

y

angrybirds
badpiggies

captainamerica
chaoscrazysnowboard

hotpursuit ibowlsleepyjack
templerun

GEOMEAN

Immediate Mode Rendering

W
VGA

VGA
HVGA
QVGA
W

VGA
VGA
HVGA
QVGA
W

VGA
VGA
HVGA
QVGA
W

VGA
VGA
HVGA
QVGA
W

VGA
VGA
HVGA
QVGA
W

VGA
VGA
HVGA
QVGA
W

VGA
VGA
HVGA
QVGA
W

VGA
VGA
HVGA
QVGA
W

VGA
VGA
HVGA
QVGA
W

VGA
VGA
HVGA
QVGA

0.0

0.1

0.2

0.3

0.4

0.5

angrybirds
badpiggies

captainamerica
chaoscrazysnowboard

hotpursuit ibowlsleepyjack
templerun

GEOMEAN

Tile-Based Deferred Rendering

W
VGA

VGA
HVGA
QVGA
W

VGA
VGA
HVGA
QVGA
W

VGA
VGA
HVGA
QVGA
W

VGA
VGA
HVGA
QVGA
W

VGA
VGA
HVGA
QVGA
W

VGA
VGA
HVGA
QVGA
W

VGA
VGA
HVGA
QVGA
W

VGA
VGA
HVGA
QVGA
W

VGA
VGA
HVGA
QVGA
W

VGA
VGA
HVGA
QVGA

800x480 (WVGA) 640x480 (VGA) 420x380 (HVGA) 320x240 (QVGA)

Figure 9: Normalized GPU energy (static and dynamic), in relation to the energy consumed when using HD resolution, for
several Android games. The graph includes results for IMR (left) and TBDR (right).

0.0

0.1

0.2

0.3

0.4

0.5

No
rm

al
iz

ed
 e

ne
rg

y

anatomy citysurf desktop droidiris facebookglobaltime k9mail GEOMEAN

Immediate Mode Rendering

W
VGA

VGA
HVGA
QVGA
W

VGA
VGA
HVGA
QVGA
W

VGA
VGA
HVGA
QVGA
W

VGA
VGA
HVGA
QVGA
W

VGA
VGA
HVGA
QVGA
W

VGA
VGA
HVGA
QVGA
W

VGA
VGA
HVGA
QVGA
W

VGA
VGA
HVGA
QVGA

0.0

0.1

0.2

0.3

0.4

0.5

anatomy citysurf desktop droidiris facebookglobaltime k9mail GEOMEAN

Tile-Based Deferred Rendering

W
VGA

VGA
HVGA
QVGA
W

VGA
VGA
HVGA
QVGA
W

VGA
VGA
HVGA
QVGA
W

VGA
VGA
HVGA
QVGA
W

VGA
VGA
HVGA
QVGA
W

VGA
VGA
HVGA
QVGA
W

VGA
VGA
HVGA
QVGA
W

VGA
VGA
HVGA
QVGA

800x480 (WVGA) 640x480 (VGA) 420x380 (HVGA) 320x240 (QVGA)

Figure 10: Normalized GPU energy (static and dynamic), in relation to the energy consumed when using HD resolution, for
several general purpose applications. The graph includes the numbers for IMR (left) and TBDR (right).

0

20

40

60

80

100

M
SS

IM
 In

de
x

angrybirds
badpiggies

captainamerica
chaoscrazysnowboard

hotpursuit ibowlsleepyjack
templerun

GEOMEAN
W

VGA
VGA
HVGA
QVGA
W

VGA
VGA
HVGA
QVGA
W

VGA
VGA
HVGA
QVGA
W

VGA
VGA
HVGA
QVGA
W

VGA
VGA
HVGA
QVGA
W

VGA
VGA
HVGA
QVGA
W

VGA
VGA
HVGA
QVGA
W

VGA
VGA
HVGA
QVGA
W

VGA
VGA
HVGA
QVGA
W

VGA
VGA
HVGA
QVGA

0

20

40

60

80

100

anatomy citysurf desktop droidiris facebookglobaltime k9mail GEOMEAN

W
VGA

VGA
HVGA
QVGA
W

VGA
VGA
HVGA
QVGA
W

VGA
VGA
HVGA
QVGA
W

VGA
VGA
HVGA
QVGA
W

VGA
VGA
HVGA
QVGA
W

VGA
VGA
HVGA
QVGA
W

VGA
VGA
HVGA
QVGA
W

VGA
VGA
HVGA
QVGA

800x480 (WVGA) 640x480 (VGA) 420x380 (HVGA) 320x240 (QVGA)

Figure 11: Image quality, compared with HD resolution, for several Android games (left) and general purpose applications
(right). The MSSIM index [17] is employed as the metric for automatic image quality assessment.

ing. Figure 10 shows similar energy results for the general
purpose applications, we found 60%, 70%, 83% and 92% av-
erage energy savings respectively for IMR, and 56%, 65%,
82% and 90% average energy savings for TBDR.

Figure 11 shows the corresponding image qualities, evalu-
ated by using the MSSIM index. We found 3%, 5%, 7% and
13% of average quality loss for the Android games, respec-
tively. The worst case image quality losses are around 20%,
and they are observed by captainamerica, chaos and hot-
pursuit at QVGA resolution. However, the general purpose
applications are less sensitive to the screen resolution than

games. We observed just 2%, 3%, 5% and 7% of average
quality loss, respectively. Games tend to render more com-
plex objects than the general purpose applications so they
are more sensitive to screen resolution.

Figure 12 plots average quality versus energy, it includes
just the numbers for IMR since very similar results were
obtained for TBDR. The graph shows that reducing image
quality provides at first a huge energy reduction, but fur-
ther quality sacrifices tend to produce progressively lower
energy savings. The main energy savings are obtained by the
first reduction step (from HD to WVGA), which saves 55%

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
MSSIM

0.0

0.2

0.4

0.6

0.8

1.0
N
or
m
al
iz
ed
 e
ne
rg
y

HD 1280x720

WVGA 800x480
VGA 640x480

HVGA 480x320

QVGA 320x240

HD

WVGA
VGA

HVGA
QVGA

Games
General purpose

Figure 12: Image quality vs energy for different screen res-
olutions. The x coordinate for each point is the geometric
mean of the MSSIM for all the applications, the y coordinate
is the geometric mean of the normalized energy.

the energy by just 3% loss in quality (Android games). In
other words, it reduces 18,3% of energy for each 1% in qual-
ity, while further successive downgrading steps (to VGA,
HVGA and QVGA) provide only additional reductions of
5.4%, 5.9%, and 1.8% of energy for each 1% in quality. Sim-
ilar results are observed for general purpose applications.
Moving from HD to WVGA provides 30% energy savings
on average for each 1% in quality, whereas downgrading to
VGA, HVGA and QVGA achieves just additional energy
reductions of 9.7%, 8.9% and 3.3% for each unit of quality
respectively.

Overall, this study shows that the graphics driver could
save up to 90% of GPU energy by sacrificing less than 13%
of quality for games, and up to 92% of GPU energy by losing
less than 7% image quality for general purpose applications.
Of course, this ability could be controlled by software so
that it is activated only under predefined circumstances (e.g.
battery level), or enabled by the user on demand.

6. RELATED WORK
The development of tools for evaluating the GPU has at-

tracted the attention of the architectural community the last
few years. Recent simulators, such as GPGPUSim [2] or
Barra [4], model General Purpose GPU (GPGPU) architec-
tures. These tools support CUDA [27] or OpenCL [28], but
they do not support graphics APIs such as OpenGL. GPG-
PUSim includes a power model, GPUWattch [23], which is
also based on McPAT as in TEAPOT. Both power mod-
els are similar, but GPUWattch focuses on GPGPU specific
features whereas TEAPOT models more specialized graph-
ics hardware. For instance, GPGPUSim models FP units
that can be combined to execute 1 double-precision (DP) or
2 single-precision (SP) operations, but TEAPOT relies on
SP units since DP is common in scientific workloads but not
in games. On the contrary, TEAPOT models specialized
Texture Sampling units since texture fetching instructions
are frequent in graphical workloads.

ATTILA [10] provides an OpenGL framework for collect-
ing traces of desktop games and a cycle-accurate GPU simu-
lator. A Direct3D [26] driver is also included in the last ver-
sions. Although ATTILA provides full support for desktop
games, it cannot run applications for smartphones. Further-
more, its GPU simulator models a desktop-like immediate-

(a) HD
(MSSIM=100)

(b) WVGA
(MSSIM=96)

(c) VGA
(MSSIM=94)

(d) HVGA
(MSSIM=88)

(e) QVGA
(MSSIM=73)

Figure 13: Image quality is evaluated by comparison with a
HD reference image. (a) is a 50x50 pix. sample crop of the
HD frame. (b)-(e) show the same frame region at smaller
screen resolutions (scaled up to highlight the differences).

mode renderer, whereas TBDR [35] is very popular in the
low-power segment. Finally, ATTILA does not include a
power model. Qsilver [13] can also collect and simulate
traces from desktop OpenGL games, and it includes a power
model. GRAAL [7] also provides OpenGL support and a
power model for GPUs. Furthermore, it models a low-power
GPU based on TBDR. However, OpenGL ES support is not
available in any of these simulators so they cannot run mo-
bile applications for smartphones and tablets. Unlike the
aforementioned tools, TEAPOT additionally provides im-
age quality metrics for automatic image quality assessment
and includes a power model for OLED screens, since it has
been designed for analyzing graphical workloads in the low-
power segment. In addition, TEAPOT supports full-system
GPU simulation, being able to profile multiple applications
accessing the GPU concurrently.

7. CONCLUSIONS
This paper presents TEAPOT, a toolset for evaluating

mobile graphics systems. Unlike previous GPU simulators,
TEAPOT is tailored towards the low-power segment. It pro-
vides full-system cycle-accurate GPU simulation for mobile
workloads and a power model for both the GPU and the
OLED screen. Moreover, it employs image quality metrics,
allowing for image quality assessment. We have conducted
two case studies in order to demonstrate some of the po-
tential uses of TEAPOT. First, we have analyzed the im-
portance of full-system GPU simulation, showing that the
OS GPU usage is non-negligible. Our results demonstrate
that Android image composition takes 26% of GPU time
and 24% of GPU energy on average for a set of commercial
games. We then turned our focus into analyzing techniques
that trade quality for energy. We showed that significant
amounts of energy can be saved by allowing for small distor-
tions in image quality. Our results indicate that by reducing
the quality of the graphics by 13%, energy savings of 90%
are attainable.

8. ACKNOWLEDGMENTS
This work has been supported by the Generalitat de Ca-

talunya under grant 2009SGR-1250, the Spanish Ministry of
Economy and Competitiveness under grant TIN 2010-18368,
and Intel Corporation. Jose-Maria Arnau is supported by
an FI-Research grant.

9. REFERENCES
[1] J.-M. Arnau, J.-M. Parcerisa, and P. Xekalakis.

Boosting Mobile GPU Performance with a Decoupled
Access/Execute Fragment Processor. In Proc. of
ISCA, pages 84–93, 2012.

[2] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and
T. Aamodt. Analyzing CUDA Workloads Using a
Detailed GPU Simulator. In Proc. of ISPASS, pages
163–174, 2009.

[3] A. Carroll and G. Heiser. An Analysis of Power
Consumption in a Smartphone. In Proc. of USENIX,
pages 21–21, 2010.

[4] S. Collange, M. Daumas, D. Defour, and D. Parello.
Barra: A Parallel Functional Simulator for GPGPU.
In Proc. of MASCOTS, pages 351–360, 2010.

[5] M. Dong, Y.-S. K. Choi, and L. Zhong. Power
Modeling of Graphical User Interfaces on OLED
Displays. In Proc. of DAC, pages 652–657, 2009.

[6] M. W. Eldridge. Designing Graphics Architectures
Around Scalability and Communication. PhD thesis,
2001.

[7] B. Juurlink, I. Antochi, D. Crisu, S. Cotofana, and
S. Vassiliadis. GRAAL: A Framework for Low-Power
3D Graphics Accelerators. IEEE Computer Graphics
and Applications, 28(4):63–73, 2008.

[8] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.
Tullsen, and N. P. Jouppi. McPAT: An Integrated
Power, Area, and Timing Modeling Framework for
Multicore and Manycore Architectures. In Proc. of
MICRO, pages 469–480, 2009.

[9] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A
Sorting Classification of Parallel Rendering. IEEE
Comput. Graph. Appl., 14(4):23–32, July 1994.

[10] V. Moya, C. Gonzalez, J. Roca, A. Fernandez, and
R. Espasa. ATTILA: A Cycle-level Execution-Driven
Simulator for Modern GPU Architectures. In Proc. of
ISPASS, pages 231–241, 2006.

[11] K. Pulli, T. Aarnio, K. Roimela, and J. Vaarala.
Designing Graphics Programming Interfaces for
Mobile Devices. IEEE Comput. Graph. Appl.,
25(6):66–75, Nov. 2005.

[12] J. Rasmusson, J. Hasselgren, and T. Akenine-Möller.
Exact and Error-Bounded Approximate Color Buffer
Compression and Decompression. In Proc. of
EUROGRAPHICS Conf. on Graphics Hardware,
pages 41–48, 2007.

[13] J. W. Sheaffer, D. Luebke, and K. Skadron. A Flexible
Simulation Framework for Graphics Architectures. In
Proc. of the EUROGRAPHICS Conf. on Graphics
Hardware, pages 85–94, 2004.

[14] A. Shye, B. Scholbrock, and G. Memik. Into the Wild:
Studying Real User Activity Patterns to Guide Power
Optimizations for Mobile Architectures. In Proc. of
MICRO, pages 168–178, 2009.

[15] J. Ström and T. Akenine-Möller. iPACKMAN:
High-Quality, Low-Complexity Texture Compression
for Mobile Phones. In Proc. of the EUROGRAPHICS
Conf. on Graphics Hardware, pages 63–70, 2005.

[16] J. Tang, S. Liu, Z. Gu, C. Liu, and J.-L. Gaudiot.
Prefetching in Embedded Mobile Systems Can Be
Energy-Efficient. IEEE Comput. Archit. Lett.,
10(1):8–11, Jan. 2011.

[17] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli.
Image Quality Assessment: from Error Visibility to
Structural Similarity. IEEE Transactions on Image
Processing, 13(4):600–612, 2004.

[18] Android SDK.
http://developer.android.com/sdk/index.html.

[19] Bringing High-End Graphics to Handheld Devices.
http://www.nvidia.com/content/PDF/tegra_white_

papers/Bringing_High-

End_Graphics_to_Handheld_Devices.pdf.

[20] Color Space Conversions.
http://www.poynton.com/PDFs/coloureq.pdf.

[21] Composition with Snapdragon.
https://developer.qualcomm.com/sites/default/

files/composition-with-snapdragon.pdf.

[22] Gallium3D.
http://en.wikipedia.org/wiki/Gallium3D/.

[23] GPUWattch.
http://www.gpgpu-sim.org/gpuwattch/.

[24] Mali-400 MP: A Scalable GPU for Mobile Devices.
http:

//www.highperformancegraphics.org/previous/

www_2010/media/Hot3D/HPG2010_Hot3D_ARM.pdf.

[25] Mean Squared Error. http:
//en.wikipedia.org/wiki/Mean_squared_error.

[26] Microsoft Direct3D. http:
//en.wikipedia.org/wiki/Microsoft_Direct3D.

[27] NVIDIA CUDA Programming Guide.
http://docs.nvidia.com/cuda/cuda-c-

programming-guide/.

[28] OpenCL. http://www.khronos.org/opencl/.

[29] OpenGL ES. http://www.khronos.org/opengles/.

[30] OpenGL Shading Language.
http://en.wikipedia.org/wiki/GLSL.

[31] Qualcomm Adreno 320.
http://www.anandtech.com/show/6112/qualcomms-

quadcore-snapdragon-s4-apq8064adreno-320-

performance-preview.

[32] Peak signal-to-noise ratio.
http://en.wikipedia.org/wiki/Peak_signal-to-

noise_ratio.

[33] PowerVR Technology Overview.
http://www.imgtec.com/factsheets/SDK/PowerVR%

20Technology%20Overview.1.0.2e.External.pdf.

[34] QEMU. http://wiki.qemu.org/Main_Page.

[35] Tile-Based Deferred Rendering.
http://en.wikipedia.org/wiki/Tiled_rendering.

[36] Tungsten Graphics Shader Infrastructure.
http://people.freedesktop.org/~csimpson/

gallium-docs/tgsi.html.

[37] Using hardware acceleration in the Android Emulator.
http://developer.android.com/tools/devices/

emulator.html#acceleration.

http://developer.android.com/sdk/index.html
http://www.nvidia.com/content/PDF/tegra_white_papers/Bringing_High-End_Graphics_to_Handheld_Devices.pdf
http://www.nvidia.com/content/PDF/tegra_white_papers/Bringing_High-End_Graphics_to_Handheld_Devices.pdf
http://www.nvidia.com/content/PDF/tegra_white_papers/Bringing_High-End_Graphics_to_Handheld_Devices.pdf
http://www.poynton.com/PDFs/coloureq.pdf
https://developer.qualcomm.com/sites/default/files/composition-with-snapdragon.pdf
https://developer.qualcomm.com/sites/default/files/composition-with-snapdragon.pdf
http://en.wikipedia.org/wiki/Gallium3D/
http://www.gpgpu-sim.org/gpuwattch/
http://www.highperformancegraphics.org/previous/www_2010/media/Hot3D/HPG2010_Hot3D_ARM.pdf
http://www.highperformancegraphics.org/previous/www_2010/media/Hot3D/HPG2010_Hot3D_ARM.pdf
http://www.highperformancegraphics.org/previous/www_2010/media/Hot3D/HPG2010_Hot3D_ARM.pdf
http://en.wikipedia.org/wiki/Mean_squared_error
http://en.wikipedia.org/wiki/Mean_squared_error
http://en.wikipedia.org/wiki/Microsoft_Direct3D
http://en.wikipedia.org/wiki/Microsoft_Direct3D
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://www.khronos.org/opencl/
http://www.khronos.org/opengles/
http://en.wikipedia.org/wiki/GLSL
http://www.anandtech.com/show/6112/qualcomms-quadcore- snapdragon-s4-apq8064adreno-320-performance-preview
http://www.anandtech.com/show/6112/qualcomms-quadcore- snapdragon-s4-apq8064adreno-320-performance-preview
http://www.anandtech.com/show/6112/qualcomms-quadcore- snapdragon-s4-apq8064adreno-320-performance-preview
http://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
http://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
http://www.imgtec.com/factsheets/SDK/PowerVR%20Technology%20Overview.1.0.2e.External.pdf
http://www.imgtec.com/factsheets/SDK/PowerVR%20Technology%20Overview.1.0.2e.External.pdf
http://wiki.qemu.org/Main_Page
http://en.wikipedia.org/wiki/Tiled_rendering
http://people.freedesktop.org/~csimpson/gallium-docs/tgsi.html
http://people.freedesktop.org/~csimpson/gallium-docs/tgsi.html
http://developer.android.com/tools/devices/emulator.html#acceleration
http://developer.android.com/tools/devices/emulator.html#acceleration

	Introduction
	SIMULATION INFRASTRUCTURE
	Application Level
	Driver Level
	Hardware Level
	Cycle-Accurate GPU Simulator
	Power Model
	Image Quality Assessment

	EVALUATION METHODOLOGY
	Performance characterization

	ANDROID GPU USAGE
	TRADING QUALITY FOR ENERGY
	RELATED WORK
	CONCLUSIONS
	Acknowledgments
	References

